Nearest Neighbour Search for Visualization Using Arbitrary Triangulations Nearest Neighbour Search for Visualization Using Arbitrary Triangulations
نویسنده
چکیده
In visualization of scattered data, one is often faced with the problem of nding the nearest neighbours of a data site. This task frequently occurs in an advanced stage of the visualization process, where several data structures have been created during run time. Many applications compute a triangulation of the data for their visualization purposes. To take advantage of this previously allocated data structure we propose an algorithm for determining the k nearest neighbours in a triangulated point set. As a benet, this algorithm dynamically computes exactly as many neighbours as necessary for the speci c application and does not assume a particular kind of triangulation. Furthermore, it works in any nite-dimensional, metric a ne space. Zusammenfassung Bei der Visualisierung von gestreuten Daten steht man oft dem Problem gegen uber, die nachsten Nachbarn in einem Datensatz zu nden. Diese Aufgabe tritt hau g in einem fortgeschrittenen Stadium des Visualisierungsprozesses auf, wenn bereits verschiedene Datenstrukturen wahrend der Laufzeit erzeugt wurden. Zum Zwecke der Visualisierung berechnen viele Anwendungen eine Triangulierung der Daten. Um aus diesen vorher berechneten Datenstrukturen Nutzen zu ziehen, wird hier ein Algorithmus zur Bestimmung der k nachsten Nachbarn in einer triangulierten Punktmenge vorgeschlagen. Der Algorithmus berechnet vorteilhafterweise dynamisch exakt so viele Nachbarn wie f ur die bestimmte Anwendung notwendig sind und setzt keine besondere Art von Triangulierung voraus. Dar uberhinaus funktioniert er in allen endlichdimensionalen, metrisch{a nen Raumen.
منابع مشابه
Proximity Search with a Triangulated Spatial Model
The proximity relations inherent in triangulations of geometric data can be exploited in the implementation of nearest-neighbour search procedures. This is relevant to applications such as terrain analysis, cartography and robotics, in which triangulations may be used to model the spatial data. Here we describe neighbourhood search procedures within constrained Delaunay triangulations of the ve...
متن کاملA Replacement for Voronoi Diagrams of Near Linear Size
A compressed quad tree based replacement for approximate voronoi diagrams with near linear complexity using hierarchial clustering and prioritized point location among balls and with applications for improved approximate nearest neighbour search using point location among equal balls, fat triangulations of proximity diagrams in two and higher dimensions and for fast approximate proximity search.
متن کاملEecient Nearest-neighbour Searches Using Weighted Euclidean Metrics
Building an index tree is a common approach to speed up the k nearest neighbour search in large databases of many-dimensional records. Many applications require varying distance metrics by putting a weight on diierent dimensions. The main problem with k nearest neighbour searches using weighted euclidean metrics in a high dimensional space is whether the searches can be done eeciently We presen...
متن کاملLocalization using a Region-Based k-Nearest Neighbour Search
This paper explores a method of performing localization on local vision mobile robots. It describes a method of processing images, extracting regions, and comparing those regions against a database of preprocessed images. Localization is achieved using the k-nearest neighbour algorithm as the basis for approximating the current position. Initial results are provided that show the potential of t...
متن کاملTesting Some Improvements of the Fukunaga and Narendra's Fast Nearest Neighbour Search Algorithm in a Spelling Task
Nearest neighbour search is one of the most simple and used technique in Pattern Recognition. One of the most known fast nearest neighbour algorithms was proposed by Fukunaga and Narendra. The algorithm builds a tree in preprocess time that is traversed on search time using some elimination rules to avoid its full exploration. This paper tests two new types of improvements in a real data enviro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996